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ABSTRACT

The prediction of solar flares is of practical and scientific interest; however, many machine learning methods used for this prediction
task do not provide the physical explanations behind a model’s performance. We made use of two recently developed explainable
artificial intelligence techniques called gradient-weighted class activation mapping (Grad-CAM) and expected gradients (EG) to
reveal the decision-making process behind a high-performance neural network that has been trained to distinguish between Mg ii
spectra derived from flaring and nonflaring active regions, a fact that can be applied to the task of short timescale flare forecasting.
The two techniques generate visual explanations (heatmaps) that can be projected back onto the spectra, allowing for the identification
of features that are strongly associated with precursory flare activity. We automated the search for explainable interpretations on the
level of individual wavelengths, and provide multiple examples of flare prediction using IRIS spectral data, finding that prediction
scores in general increase before flare onset. Large IRIS rasters that cover a significant portion of the active region and coincide with
small preflare brightenings both in IRIS and SDO/AIA images tend to lead to better forecasts. The models reveal that Mg ii triplet
emission, flows, as well as broad and highly asymmetric spectra are all important for the task of flare prediction. Additionally, we
find that intensity is only weakly correlated to a spectrum’s prediction score, meaning that low intensity spectra can still be of great
importance for the flare prediction task, and that 78% of the time, the position of the model’s maximum attention along the slit during
the preflare phase is predictive of the location of the flare’s maximum UV emission.
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1. Introduction

A solar flare is a sudden release of energy due to magnetic
reconnection, resulting in an enhancement across the entire
electromagnetic spectrum (Carmichael 1964; Sturrock 1966;
Hirayama 1974; Kopp & Pneuman 1976; Low 1982). For large
flares this energy can reach an order of ∼ 1032 ergs (Aulanier
et al. 2013), and is used to accelerate charged particles toward
and away from the solar surface. The energy dissipates over
stages with timescales that vary from seconds to hours (e.g.,
Fletcher et al. 2011). The outward bound material fills the
interplanetary medium with high-energy particles and perturbs
the heliospheric magnetic field (Rouillard et al. 2016), both
of which interact with Earth’s magnetosphere. These events,
if directed toward Earth, can trigger power grid blackouts and
adversely affect communication systems (e.g., Boteler 2006;
Schrijver et al. 2014), which in today’s technologically saturated
environment comes with a high socioeconomic cost, making
their prediction critical.

Machine learning has provided us with a set of powerful al-
gorithms that can be used to attempt to predict whether an active
region (a patch on the Sun associated with enhanced magnetic
activity), will produce a flare or not. One of the most successful
algorithms for such a task is the so-called neural network (NN)
(Rosenblatt 1958), which is a computational graph-like structure
that draws inspiration directly from the mammalian brain. Just as
an organic brain, these networks automatically program them-
selves through experience (e.g., Goodfellow et al. 2016) and can

generalize what they have learned to make informed decisions
about new observations (e.g., Vidyasagar 2003).

The majority of flare prediction efforts rely on full photo-
spheric vector magnetograms recorded by the Helioseismic and
Magnetic Imager (HMI, Scherrer et al. 2012; Hoeksema et al.
2014) onboard the Solar Dynamic Observatory (SDO, Lemen
et al. 2012). These photospheric magnetic data are typically fed
into a machine learning algorithm such as a NN (e.g., Bobra &
Couvidat 2015; Florios et al. 2018; Liu et al. 2019; Soós et al.
2022). In terms of the true skill statistic (TSS), the standard met-
ric for evaluating a model’s predictive performance (1 being op-
timal and -1 being adverse), the expected baseline TSS using
data from SDO is around ∼ 0.7, regardless of the sophistica-
tion of the machine learning algorithm (Jonas et al. 2018). This
indicates an apparent bottleneck and limit to the utility of photo-
spheric magnetic data.

As a way to overcome this bottleneck, researchers have
started experimenting with novel parameterizations of the HMI
magnetic data using topological data analysis to codify their rich
spatial features (Deshmukh, Varad et al. 2020; Deshmukh et al.
2022). Moreover, additional information from complementary
data sources such as soft X-ray, flare history, and AIA photo-
spheric, chromospheric, and coronal images have been incorpo-
rated in an attempt to improve model performance (Nishizuka
et al. 2017; Jonas et al. 2018).

New evidence suggests that high resolution spectral data
can be used to predict solar flares at least on short subhour
timescales. Panos & Kleint (2020) created two classes of Mg ii
spectra captured by NASA’s Interface Region Imaging Spectro-
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graph (IRIS) (De Pontieu et al. 2014). The first class consisted of
spectra from active regions that did not lead to solar flares (here-
after referred to as the AR class), and the second one consisted
of spectra collected from active regions 25 minutes before flare
onset (referred to as the preflare PF class). It was demonstrated
that a simple feed forward fully connected NN could distinguish
between spectra from either class with an 80% accuracy, pre-
cision, and recall. Furthermore, the network’s performance in-
creased monotonically when successively feeding spectra from
t = 30 to t = 0 minutes before the onset of a large X1.6-class
flare, albeit over a restricted region of the slit. It is not, however,
clear why the network performed so well at the classification
task, and on what grounds it based its decisions. Nevertheless,
these results open up the possibility of not only improving the
current performance of our models, but due to the high diag-
nostic capabilities of spectra (e.g., Leenaarts et al. 2013), could
also provide critical information about the state of the preflare
atmosphere, and any necessary conditions that might facilitate a
solar flare (e.g., Yang 2019), thus shifting the focus from model
performance to physical understanding.

Along these lines, and in an attempt to explain the above
results, a recent study made use of a clustering technique to
identify common spectroscopic precursors and atmospheric
conditions that might facilitate flare triggering events (Woods
et al. 2021). It was found that single-peak emission in both the
Mg ii h&k lines as well as the pair of subordinate lines located
at ∼ 2798.8 Å appeared most commonly, but not exclusively,
within the study’s PF dataset. Inversions of these single-peaked
profiles using the STiC inversion code (de la Cruz Rodríguez
et al. 2019) indicate enhanced chromospheric temperatures and
electron densities. Similar to previous findings (e.g., Cheng
et al. 1984; Machado et al. 1988; Harra et al. 2001; Panos &
Kleint 2020), the authors speculate this to be a consequence of
small-scale heating events possibly driven by reconnection as
far back as 40 minutes before flare onset. Since this clustering
approach of identifying important PF spectra is manually inten-
sive and time-consuming, a recent study automated the process
via the use of multiple instance learning (MIL) (Huwyler &
Melchior 2022). In addition to high accuracies on the AR/PF
classification task, their models automatically identified spectra
that were judged to be important for flare prediction, confirming
the results found in Woods et al. (2021). Their work however
does not indicate the particular features of each spectrum that
are responsible for high model scores.

For this study, we made use of the same Mg ii dataset from
the original paper. We then trained a powerful "visual" NN called
a convolutional neural network or ConvNet on the AR/PF binary
classification problem. Once the model learned to distinguish be-
tween AR and PF spectra, we used a class of techniques, col-
lectively referred to as Explainable Artificial Intelligence (XAI)
(Barredo Arrieta et al. 2019) to derive direct explanations from
the ConvNet without having to perform intermediate manual
steps. These techniques allowed us not only to automatically
discover which spectra are important, but which features of the
spectra are most critical for predicting solar flares.

2. Data

The data used in this study are composed of Mg ii spectra cap-
tured by the IRIS satellite. For consistency, the dataset is iden-
tical to that used in Panos & Kleint (2020). As before, we se-
lected a spectral window spanning 2794.14 − 2805.72 Å, which
includes both the Mg ii h&k lines as well as the triplet emission

around 2798.77 Å. We then partitioned observations into two
classes based on the GOES soft X-ray flux: The first partition
is called the AR class, and is composed of roughly 2.5 million
spectra derived from 18 observations and extracted from a 25
minute window at the start of each observation. An observation
here means a period with a predefined observing scheme, which
can last several hours. The only criterion for an observation in
this class was that a large flare (M- or X-class) did not appear
over the entire duration of the IRIS observation, as verified by
the GOES X-ray flux. This does not preclude smaller flares such
as C-class and lower. Since this study probes short timescales
(as apposed to the normal 24 hour margins used in flare predic-
tion studies), it is not guaranteed that the active region did not
produce a large flare after the IRIS observation’s time window
ended, leading to a possible weak mixing of the classes.

The second partition is called the PF class and consists of
2.4 million spectra taken from 19 observations in a time window
25 minutes (sometimes shorter if IRIS was not recording) before
each X- or M-class flare’s onset as defined by the NOAA catalog
flare start time (Table 1 of the same study). Like previous studies
(e.g., Jonas et al. 2018; Angryk et al. 2020), we do not consider
small flares (<M-class) as targets for prediction, but rather as
a set of important features whose frequency could help predict
larger events, meaning that smaller flares were not necessarily
precluded from the 25 minute analysis window for both the AR-
and PF class.

An example of a PF (top) and AR (bottom) observation can
be seen in Fig. 1. The gray regions indicate the 25 minute time
windows over which Mg ii spectra were collected with the time
in minutes on the x-axis. As indicated by the GOES 1 − 8 Å
flux (solid blue curve) and flare class along the y-axis, a large
M-class flare occurs in the PF observation directly after the sam-
pling region, while the AR observation is flat and then slightly
raises to a C-class level towards the end of the observation. It is
important to remember that GOES integrates the X-ray flux from
the entire solar disk while IRIS observes only a small patch of
the sun (a maximum of 175× 175 arcsec2 for the slit-jaw imager
and 130 × 175 arcsec2 for its spectrometer), therefore, although
the large flares were visually confirmed to be within IRIS’s field
of view (and indeed at some future point crossing the spectro-
gram), the X-ray signals in the AR class could have occurred
somewhere else on the solar disk. Each interval between the ver-
tical black dotted lines indicates the completion of a single IRIS
raster. If the observation is a sit-and-stare, meaning no spatial
rastering of the spectrogram, as in the AR example, then the
intervals indicate the individual exposure times. For context, a
SJI accompanies each figure and was rendered roughly around
the time indicated by the vertical blue dashed lines. The blue re-
gions within each SJI indicate the spatial extent of the IRIS raster
which is spanned by steps of equal size. Each flare was assigned
a number in the title for future reference.

After sampling the spectra using the above prescriptions, a
series of additional processing steps were performed on the al-
ready preprocessed IRIS level 2 data to make it amenable to
machine learning methods. These steps were as follows: 1) All
spectra were interpolated to a grid size of 240 λ-points. 2) Each
spectral profile was normalized by its maximum value, effec-
tively placing precedence on the shape of the Mg ii spectra in-
stead of their intensity. It is important to keep in mind that the
intensity is still weakly encoded into the spectral shape, since
high intensity profiles, once normalized, will result in spectra
with flat continuum emission. To avoid noisy and corrupt data,
entire spectra were replaced with nan’s if they met any of the fol-
lowing conditions: Missing data→ If a spectrum (within our se-
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Fig. 1. Example of data collection for a single PF (top) and AR (bottom) observation. Mg ii spectra in both cases were extracted from the gray
time interval with the interval between each vertical dashed line indicating the completion of a single raster. For context a SJI is included for each
observation at the time roughly indicated by the vertical dashed blue line. The blue curves in the time plots indicate the integrated GOES flux in
the 1−8 Å channel, while the blue regions in the SJI indicate the span of the raster, with a four step raster for the PF observation and a sit-and-stare
for the AR observation.

lected wavelength window) contained at least one value < −100.
Overexposure → If 10 consecutive intensity values were equal
to the maximum intensity value. This is quite a high threshold
and in retrospect should be decreased, however, for the sake of
continuity with previous results we maintain this setting. Poor
signal-to-noise → Any spectra that remained below a 10 DN/s
threshold. Cosmic rays → If the maximum intensity value ap-
peared outside of a small window surrounding both the h&k-
cores, or if the k/h-ratio exceeded the theoretical limits of 2:1 or
1:1 by a value of 0.3, that is spectra with ratios exceeding 2.3 or
less than 0.7 were excluded. Additionally, the reconstruction er-
ror of a variational autoencoder trained on quiet Sun spectra was
used as a way to dynamically mask spectra that are typically as-
sociated with quiescent Sun observations, see Panos et al. (2021)
for details.

3. Model development

In this section, we build up the intuition necessary to understand
how our machine learning algorithm predicts whether a spectrum
comes from a nonflaring or flaring active region by introducing a
general set of machine learning principles and training etiquette.
We then discuss our particular case, including a description of
the model that we use (a ConvNet), and how IRIS data in combi-
nation with the search for quality explanations in addition to high
performance, forces us to modify the standard training practice.

3.1. Problem outline

Our goal is to create a function/model FΘ(x) → ŷ, that is pa-
rameterized by a set of arguments {θ | θ ∈ Θ}, and can take as
input a raw spectrum x ∈ X from the dataset, and produce an
output probability ŷ ∈ [0, 1] representing the model’s guess as

to whether the spectrum belongs to either the AR (output closer
to zero) or PF class (output closer to one). The objective is to
find a set of parameters {θ}, referred to as the model’s weights,
that generates the closest match between the actual set of labels
{yn} and the predicted set of labels {ŷn}, for example, we want a
model that can correctly predict the class of as many spectra as
possible. This type of problem is referred to as a binary classifi-
cation problem and can be solved using any number of methods.
The optimal parameterization is usually found by introducing a
loss function L(y, ŷ,Θ), that when minimized, guides the model
parameters in a controlled manner to their optimal values {θ∗}.
This process of incrementally adjusting the model’s weights is
referred to as training and is achieved via gradient descent, that
is, by taking the derivative of the loss function ∂θL(θ) with re-
spect to the weights, and adjusting those parameters in small in-
crements in the direction that results in the largest decrease to
the loss. Since the objective is simply to have a model make as
many correct label predictions as possible, the loss function de-
pends on the true and predicted labels as well as its internal set
of parameters. To train our models we made use of the binary
cross-entropy (BCE) loss function (with regularization)

L(y, ŷ,Θ) = −
1
N

N∑
n=1

{
yn logFΘ(xn)

+ (1 − yn) log [1 − FΘ(xn)]
}

+ λ

M∑
m=1

θ2
m, (1)

which is a measure of dissimilarity between the true set of labels
{yn} and the predicted set of labels {ŷn}. If the differences be-
tween these two sets is large, then the loss is also large, and vice
versa. In terms of information theory, the BCE is the average
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number of bits required to decode a signal using an estimated
distribution rather than the true distribution. It is also equivalent
to maximizing the log-likelihood of the data under {θ} and is
identical to the KL-divergence up to an additive constant, where
the KL-divergence is a pseudo metric used to measure the dis-
similarity/distance between two probability distributions.

With large datasets, it is computationally expensive to only
update the weights after computing the sum of the loss over ev-
ery training example (a single epoch). For this reason, we use
a variant of gradient descent called stochastic gradient descent
(Saad 1999), which updates the weights based on a pseudo loss
that is estimated by randomly sampling a subset of spectra in-
stead of all spectra. In our case, N only runs over 64 spectra for
each update.

The last term in Eq. 1 is not part of the definition of the BCE-
loss but is added to penalize the weights and help the model gen-
eralize to new data. This is necessary since our true objective is
not simply to maximize the number of correct predictions with
the data the model was trained on, but to develop a robust model
that can correctly label new data. The prefactor λ is called a reg-
ularization parameter and dictates the trade-off between model
performance and robustness, with larger values generally leading
to poorer performance on the training set but better generaliza-
tion to new instances. If we do not regularize the model, gradient
descent would most likely converge to a set of weights that are
overly optimized on the training data.

To get a true measure of a model’s performance, it is impor-
tant to test the model with data that it has not encountered during
training. It is standard practice to therefore split the data into a
training, validation, and test set. While the weights are adjusted
using data from the training set, the hyperparameters such as the
model architecture as well as the regularization term λ are ad-
justed on the validation set. The test set then serves as the gold
standard to judge a model’s performance and ability to general-
ize.

The quality of the model can then be judged by analyzing
the behavior of the loss (or accuracy) as a function of epoch
(training time) on both the training and test set. During training,
these two losses trace out curves collectively known as learning
curves (as seen in Fig. 2), whose joint dynamics can be used
to identify unwanted behavior such as under or overfitting the
training data, as well as the optimal training time (either red or
blue vertical lines). The model with the lowest loss on the test
set is usually selected as optimal.

0 10 20 30 40 50 60 70 80 90 100
Epoch

0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

Lo
ss

Learning curves obtained during training
best test
best av
train Loss
test Loss

Fig. 2. Example of learning curves obtained during training. The black
and gray curves indicate the performance (in terms of loss) of a model
on both the training (black) and test (gray) set. The best model could
either be the model that scored the lowest loss on the test set (red dashed
line), or the average lowest loss on both the training and test sets (blue
dashed line). Notice that after about 50 epochs the test loss starts to
increase, indicating a possible overfitting of the training data.

3.2. Convolutional neural network

Optimization problems such as these are commonly parameter-
ized by NN’s, meaning that the function FΘ is replaced by a NN.
A ConvNet is typically composed out of two sections as seen in
Fig. 3. A feature extraction segment, inspired from the organi-
zation of an animal visual cortex (Hubel & Wiesel 1968), which
derives high level interpretable features via the use of stacked
convolutional modules (e.g., Goodfellow et al. 2016), and the
classification segment, composed of multiple fully connected
dense layers that are responsible for interpreting those features
and mapping them to a binary classification output (AR/PF). For
a detailed description of the fully connected component see ap-
pendix A.

ConvNets provide several desirable advantages over sim-
ple fully connected networks, most importantly, they provide a
means to automatically search for useful features in the input that
may help minimize the loss function and lead to better classifi-
cations (LeCun et al. 1995). This implies that the convolutional
section of the network generates a potential set of "reservoirs"
for extracting explanations. Our particular ConvNet contains six
such reservoirs referred to as feature maps Ak, indicated by black
vertical lines in Fig. 3. Each feature map is constructed via a suc-
cession of simple layered operations as indicated in Fig. 4.

Firstly, a filter/ kernel, sweeps across the input with a pre-
defined number of steps between each stride. In this case, the
filter has a visual field of three units and a stride of one unit. At
each step, the network takes the dot-product of the input and the
kernel (a convolution), to produce the set of numbers seen in the
next layer. It is important to note that at this stage two critical
attributes are injected into the ConvNet that distinguish it from
its fully connected counterpart. Firstly, each output node is con-
nected to only three input pixels, unlike a fully connected layer
where every neuron is connected to the entire visual field of the
input, and secondly, the parameters of the filter (in this example
scalar values [−1, 0, 1]) are reused for each convolution across
the entire input. This means that not only do we have fewer con-
nections between the layers, but those connections that we do
have are restrained to share similar sets of weights {θ}, resulting
in a drastic improvement in computational efficiency.

The output vector resulting from these convolutions is then
passed through a ReLU activation function which introduces a
nonlinearity by replacing any negative numbers by zero. The
resulting feature map can optionally be further reduced in size
by applying a layer that extracts global statistics, such as a max
pooling layer that maintains the largest of two numbers when
sweeping over the feature map in strides of two. Pooling layers
such as these make the network’s output invariant to small shifts
or rotations in the input, since only general information across
multiple pixels is retained. Additionally, these layers help allevi-
ate overfitting and further reduce the number of parameters fed
into the fully connected layers.

Returning back to Fig. 3, each vertical black line represents
a feature map that has been obtained using a different filter. The
values of each filter also contribute to the set of parameters {θ}
that define the network, and are updated in kind via backprop-
agation (a NN equivalent of gradient descent) in order to mini-
mize the loss function in Eq. 1. This means that each map tries to
identify useful features to serve as an optimal basis for the fully
connected layers.

During training, the kernel of each feature map alters its pa-
rameters, in order to strengthen responses to particular input pat-
terns. For instance, one of the feature maps could be dedicated to
identify triplet emission. If a spectrum has large triplet emission,
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max pooling

convolutional + relu

(240) (2, 74) (4, 22) (4, 11) (44) (5) (2)

fully connected

Fig. 3. Schematic of a ConvNet. This network is a hybrid between a set of convolutional layers and a fully connected feed forward network. The
convolutional layers contain kernels that scan through the input and extract feature maps (vertical black solid lines). Each layer forms successively
more abstract and sophisticated maps, with each filter being sensitive to a particular feature that the network deems important for the classification
task. The high level features which the network automatically generates are then passed through a max pooling layer (gray vertical lines), which
take summary statistics of the maps, reducing the number of parameters and promoting generalization. The final content is then fed into the fully
connected layers which behave as described in Fig. A.1, and are responsible for classifying the spectrum into either the AR or PF class. It is
important to note that the weights and kernels are updated during training, meaning that the ConvNet adaptively searches for a set of features that
is most helpful for distinguishing between AR and PF spectra.

Input Spectrum Filter Feature mapReLU Max Pooling

Fig. 4. Schematic for the generation of a single feature map. A fil-
ter/kernel consisting of a visual field of three pixels scans over the input
in strides of one. At each position, the dot-product between the input
and kernel is taken to form a single output in the next layer. This pro-
cess is referred to as a convolution. The resulting output is then passed
through a ReLU activation function which introduces a nonlinearity into
the network by setting all negative values to zero. The feature map Ak

i
can then optionally be passed through a max pooling function, which
scans across the map in strides of two and maintains only the largest
value. The convolution process makes the network efficient by promot-
ing sparse connections and weight sharing, while the pooling layer fur-
ther reduces the number of parameters and promotes invariance of the
network output to small shifts and rotations of the input.

then this filter will become very active and initiate a strong sig-
nal to the fully connected layers. This is demonstrated in Fig. 5,
which shows the actual activations of our trained network for
each feature map in Fig. 3. In order to see what feature each map
is searching for, we have projected the activations back onto the
input spectrum, with darker regions indicating importance.

The first convolutional layer contains two maps that differ
only slightly from the input. These maps are then convolved
in the second layer to produce more abstract and sophisticated
features. We can see that in the final layer, the feature map A1

has understood that the input spectrum contains triplet emission,
and furthermore, that this is important for the classification task.
Map A3 on the other hand is searching for the presence, or lack
of pseudo-continuum emission. We therefore see that the con-
volutional layers act as a type of translator, identifying the most
suitable language for the fully connected layers to interpret, and

Conv1

Conv2

Fig. 5. Diagram showing the actual activations of each feature map in
response to an input spectrum x. These maps correspond to the 6 vertical
black solid lines in Fig. 3. Darker shades show what part of the spectrum
each map is identifying.

furthermore, that the final convolutional layer contain the most
sophisticated understanding of the spectrum.1

The details of our ConvNet can be seen in Fig. 3. The raw
spectrum enters into the network, is convolved with two filters
that have strides of 3 and visual fields of 20 pixels each. The
convolved outputs are passed through a ReLU activation func-
tion to produce two maps of dimension 74 each (We note that
any remaining pixels after taking the modulus of the convolution
are dropped). These two maps serve as inputs for the generation
of four more abstract maps that were obtained using filters of
stride 3 and visual fields of 10 pixels. The contents of these fil-
ters are then reduced via a max pooling layer (stride 2 kernel size
2), flattened into a single vector of size 44, and then fed into the
fully connected layers for classification. For reasons discussed in
section B of the appendix, this parameterization of the ConvNet
represents a minimalistic architecture that proves sufficient for
our classification problem.

4. Explainable AI techniques

In this section, we briefly describe two different methods,
Gradient-weighted Class Activation Mapping (Grad-CAM) and
Expected Gradients (EG) for extracting features from Mg ii that
1 The spatial coherency seen in the feature maps is shattered when
passed through the fully connected layers.
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are important for flare prediction, while their detailed description
can be found in the appendix. Both of these methods are applied
to our ConvNet after it has been trained (post-hoc), and produce
visual explanations in the form of saliency maps, which are sim-
ple heatmaps that can be projected back onto the input spectrum
to indicate the most critical features that were responsible for the
network’s decision. The most important features of an input are
often referred to as the discriminant region, because this is the
region that the network focused on to discriminate between the
PF/AR classes. If the network was trained to distinguish between
spectra from active regions that did not lead to a flare, and active
regions that resulted in a flare, then the heatmaps will highlight
any hidden features of the spectral line that are particularly as-
sociated with preflare activity.

4.1. Grad-CAM

Since ConvNets are pattern recognition tools that store spatially
coherent high-level representations of the input within their fea-
ture maps, much work has gone into understanding and visu-
alizing the internal content of these special units (e.g., Mahen-
dran & Vedaldi 2015; Dosovitskiy & Brox 2016). It was re-
cently demonstrated that the last layer of feature maps in a Con-
vNet have the ability to behave as object detectors when sim-
ply trained on binary classification tasks (Zhou et al. 2014).
Further research showed that the addition of a global pooling
layer (GAP) directly before the softmax classification layer, al-
lowed researchers to simplify the network enough to project the
weights of the feature maps back into the image space to ex-
tract the precise discriminant region responsible for a particular
classification (Zhou et al. 2015). Their technique called class ac-
tivation mapping (CAM) had a distinct disadvantage in that it re-
quired an oversimplification of the models architecture to work,
which might lead to compromises in the performance of the net-
work.

Gradient-weighted Class Activation Mapping (Grad-CAM)
(Selvaraju et al. 2017) represents an improvement on CAM in
that it requires fewer architectural constraints. It has recently
been used to automatically identify important features in HMI
full-disk magnetograms for flare prediction (Yi et al. 2021).
Grad-CAM evaluates the importance of the patterns identified
by the feature maps in the final convolutional layer, by monitor-
ing the effect that small perturbations to these maps have on the
output prediction score for a particular input spectrum. A low
resolution saliency map is then constructed by taking a weighted
linear sum of the feature maps, with more weight assigned to
those maps that effect the output most. The saliency map is then
extrapolated to the dimension of the input and projected back
onto the spectrum. One weakness of Grad-CAM is that the qual-
ity of the explanation depends strongly on the selection criterion
of the network’s architecture. For a detailed description of this
method see appendix B.

4.2. Expected gradients

Expected gradients (EG) does not require special convolutional
layers, although the same network used to generate explanations
for Grad-CAM can be reused. Instead of perturbing components
within the network to evaluate the importance of patterns, EG
works directly at the resolution of the input by removing pix-
els/wavelength points and evaluating the net effect on the pre-
diction score (Gabriel et al. 2021). To ensure the fair distribution
of pixel importance, EG makes use of a game theoretic quantity

call the Shapley value φi (Shapley 1951), which was originally
constructed to fairly distribute rewards over coalitions of players.
Under this formalism, the importance φλ(FΘ) of a single inten-
sity point with the current model is obtained by calculating the
average difference between the prediction score under all combi-
nations of pixel coalitions with and without the pixel in question.
Since this requires taking many subsets over the input, the for-
malism has to be adapted to be amenable for NNs, which require
information to be pumped continuously through each pixel. In-
order to generate pseudo-subsets, EG "turns pixels off" by flood-
ing them with information from the actual dataset, such that the
expected value from these pixels after many passes results in a
net-zero effect on the output prediction score.

Unlike Grad-CAM, the saliency maps generated from EG are
often less smooth. Since it is sensible to require that the variance
in importance between proximal pixels be small, EG can incor-
porate the attributions into the training procedure as a differen-
tiable prior that often leads to smoother saliency maps and faster
convergence (Gabriel et al. 2021). We however use the attribu-
tions derived in Grad-CAM as a guide for applying a post-hoc
smoothing after training. For a detailed description of EG see
appendix C.

5. Testing our architecture and XAI
implementations on an artificial dataset

Only a few examples of attribution methods exist for one-
dimensional inputs such as spectra (e.g., Wang et al. 2016), we
therefore had to test our implementation of the ConvNet’s archi-
tecture and XAI methods in a controlled environment. We note
here that both XAI methods returned similar results (as will be
shown in section 7.2), and as such, we only show the outputs
derived from Grad-CAM.

Our artificial dataset consisted of 700k randomly selected
Mg ii spectra from several solar flares. From these spectra, we
constructed two classes, the first class was composed out of the
original flare spectra, while the second (positive) class consisted
of an identical copy of the first except for a small artificial pertur-
bation inserted at the center of each spectrum, as seen in the top
panel of Fig. 6. The task of the ConvNet is exactly the same as
our present task, namely to solve the binary classification prob-
lem of correctly labeling the class of each spectrum. Since both
classes are identical except for the perturbation, the only way for
the ConvNet to distinguish between spectra from the two classes
is to focus all of its attention on the perturbation.

This is exactly what we see in the remaining panels of Fig. 6,
which show how the ConvNet adjusts its focus during training.
From top to bottom, each panel shows the heatmap derived from
the Grad-CAM procedure outlined in the previous section (EG
results are equivalent), with warmer colors (oranges, reds) rep-
resenting wavelengths that the network has deemed important
for its classifying task. The batch number associated with each
of the plots indicates how many spectra the network has trained
on (1 batch is equal to 240 spectra, and each batch represents a
single adjustment to the weights). The weights of the network,
both in the fully connected layers and the six filters, are initiated
randomly, and as a consequence, the second panel indicates
that the network has not discovered any important features.
After batch 50, gradient descent has allowed the filters to start
identifying a portion of the central perturbation. With increasing
training time, eventually all of the network’s attention is focused
on the artifact, resulting in a classification accuracy of 100%.
This implies that 1) we have a satisfactory network architecture
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Fig. 6. Grad-CAM as a function of training time. A single batch means
that the network has trained on 240 spectra from the artificial dataset.
Initially the ConvNet focuses randomly on the left wing of the k-line
core, before pooling all of its attention onto the artifact, resulting in a
classification accuracy of 100%. Grad-CAM allows us to deduce that
the most important feature for the network’s decision making was ex-
clusively the artifact, which by design was the only way to distinguish
the two classes of spectra.

at least for solving simple problems, and 2) that our attribution
method highlights the feature that distinguishes the two classes.

There is however an important caveat which is not explored
by this example. As it turns out, once the network has discovered
a portion of the artifact its classification score saturates rapidly,
and there exists very little motivation for the network to further
adjust its weights to make the perturbation its central focus. This
results in saliency maps (as seen in Fig. 7) that highlight residues
of unimportant features, such as the h&k-line cores, and partly,
or asymmetrically cover the artifact. To be clear, the saliency
maps shown in Fig. 7 were derived from fully trained ConvNets,
which in both cases performed perfectly on the classification
task.

Fig. 7. Grad-CAM after two separate training runs. Both figures show
saliency maps derived from fully trained ConvNets on the artificial
dataset. In both cases, the models achieve near perfect classification
scores, however, the central artifact is asymmetrically covered by the
network’s attention, and residual unimportant features such as the line
cores still show nonzero contributions.

The problem here can possibly be attributed to a flat/wide
global minimum within the loss space as depicted in Fig. 8. In
this hypothetical loss space, each of the white circles represent
a convergent set of parameters {θ1, θ2} found by training differ-
ent randomly initiated models via gradient descent. Although
each converged white circle represents an optimal solution given
the loss function L(θ), such as those found in Fig. 7, it does
not represent the optimal or most intuitive explanation. In other
words, when trying to derive explainable solutions we are forced
to solve two optimization problems. The first is simply the loss
given by Eq. 1, which promotes accurate predictions, while the
second loss is harder to formulate and represents the solution that
delivers the maximum amount of explanatory power. Given the
simple configuration of this test, we know that the best expla-
nation is to have the network symmetrically highlight only the
central artifact. This would represent the solution at the center of
the well in Fig. 8.

Since the meaning of "explainable" is not easily formulated
mathematically, we cannot construct an additional term in the
loss function that gives the ConvNet a set of instructions to auto-
matically transverse the degenerate space of solutions towards its
center. We can however locate the center by means of a Monte
Carlo approach, by taking advantage of the randomness of the
initial states, and then appealing to the law of large numbers.
Our course of action is therefore to generate a "swarm" of mod-
els, whose solutions populate the perimeter of the degenerate
minima, and then take the average saliency map of the entire
ensemble

M̄c =
∑
Θ∈Ω

(FΘ → Mc)/|Ω|, (2)

where FΘ as usual is our function parameterized by a ConvNet
with unique weights Θ, and Mc is the attribution map produced
by a particular model under the Grad-CAM formalism. The final
weight solutions are part of a larger set of possible weights Ω.
The results of this method which we call the ensemble method,
can be seen in Fig. 9.

Although the line cores still occupy a residual focus of the
network, the central minimum is indeed the focus of attention
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Fig. 8. Schematic indicating the problem of obtaining the optimal solu-
tion both in terms of model performance and explanatory power. The x-
and y-axis represent the parameters of a fictitious two parameter model.
Adjusting the model parameters affects the loss, which we ideally want
to minimize (lighter regions). Gradient descent allows us to converge
to the global minimum in a controlled manner, however, there might be
multiple solutions (as indicated by the white circles) that have the same
loss. Although these points are degenerate in terms of model perfor-
mance, they do not all have the same explanatory power. We postulate
that the best explanation is located at the center of gravity of this de-
generate space. This point must be located stochastically by initiating
several models and then taking the average.

Fig. 9. Grad-CAM results after averaging over an ensemble of fully
trained models. Although the residual attention in the cores has not
fully drained to the artifact, taking the average saliency map from multi-
ple converged runs results in a symmetric covering of the perturbation,
indicating that the ensemble method offers a possible mechanism for
identifying the most intuitive explanation.

and symmetrically covered. The unwanted attention attributed to
the cores (as seen by the turquoise coloring) can possibly be re-
moved in several ways 1) by including more models into the en-
semble, 2) by using a smart optimizer such as Stochastic Weight
Averaging (SWA) (Izmailov et al. 2018) that allows the solution
to stochastically wander around the central minimum before tak-
ing the average of the model weights, or 3) by implementing a
sort of annealing by randomly perturbing the weights around the
minimum and reducing the importance of those weights which
affect the model’s accuracy least. We selected the first option of
including more models, although this is computationally more
expensive, it has the least amount of unknowns. It should also
be pointed out that in effect, the attribution prior (and less so the
post-hoc smoothing) used in EG and discussed in section 4.2, is
an attempted mechanism for traversing the degenerate minima
to the center of gravity.

In conclusion, the need for explainable models places a
precedence on the degenerate solution space, since although all

solutions have the same performance, they do not have the same
explanatory power. We make the assumption that the optimal so-
lution, both in terms of performance and explanation, is located
at the center of gravity of the degenerate minimum. Due to the
nonmathematical formalization of "explanation," this center of
gravity cannot be searched for via controlled optimization tech-
niques, but must be located stochastically via a Monte Carlo ap-
proach. It is not clear to what degree the problems encountered
here carry over into the real AR/PF dataset, however, we expect
that the loss surface will not be as degenerate, allowing the resid-
ual attention to naturally drain with increased training time. Fur-
thermore, it is difficult to imagine why the tenants and practices
derived here would not hold in more complex scenarios.

6. Creating train and test sets

Our data, as well as the objective of obtaining not only high
performance classifiers, but also explanations from our network,
complicates the training procedure outlined in section 3.1.
The last section has clarified that we need to train multiple
randomly initiated models simultaneously to derive the most
intuitive set of explanations. Although we remain true to the
general tenants already outlined, such as minimization of our
loss function and splitting our data into a training and test
set, it is not immediately obvious how one selects the data
that should be in each of these sets. We also note that we do
not optimize our model’s hyperparameters with the intent of
increasing performance metrics. This implies that a validation
set is unnecessary. In this section, we explain the method and
logic behind our particular choice of data partitioning.

Our main objective is not simply to discover that spectra
from a single PF region are different from spectra from a sin-
gle AR. This might be the case, but it also might simply be a
peculiarity of the two selected observations. In such a circum-
stance, the results would not serve our purpose of understanding
general flare precursory behavior, and would represent a type of
overfitting. We instead wish to extract only those differences that
persist over many observations. It is clear then that we require
many IRIS observations, and furthermore, that we test the model
on data that was not used during training. Additionally, to avoid
another potential form of overfitting, spectra from the same IRIS
observations cannot be both in the training and test sets, since
the models could then learn particulars about the observations
themselves, thus suppressing the model’s ability to extract gen-
eral precursory flare behavior.

To decide how to partition the 19 PF and 18 AR observations
into two sets, we had to make an experimental design decision. 1)
We could either randomly partition the observations, 2) perform
a computationally expensive k-fold validation technique which
averages over many partitions, or 3) select the partition that leads
to the highest model performance. We dismissed the first option
on the grounds that it could result in an unfortunate partitioning
given the low number of observations, thus flooring the entire
experiment. The second option, although thorough, is extremely
computationally expensive and has the potential of suppressing
common preflare signatures. The computational costs of this op-
tion can easily be appreciated if we consider that for every fold,
one has to train multiple models to obtain optimal explanations.
These models then need to generate a collection of saliency maps
at a nonnegligible expense that are then averaged. These aver-
aged maps themselves have to be averaged over all k-folds.

We therefore selected the third option based on the follow-
ing logic: If a common flare triggering mechanism exists and is
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noticeable in the UV, then it would be presumptuous to expect
that it exists in every observation, and furthermore, even if it
did, IRIS’s slit may sometimes miss the preflare signatures ow-
ing to its limited field of view. Therefore, to give our models the
best chance of isolating a frequent preflare signature, the parti-
tioning that leads to the highest model performance would likely
coincide with a partitioning that divides observations with this
mechanism into both sets.

To determine this optimal partitioning, we trained the Con-
vNet in Fig. 3 for 50 random splittings of observations, assign-
ing 5 AR and 5 PF observations to the test set and the remaining
observations to the training set for each split. Since each obser-
vation contains a different number of spectra, we ensured AR/PF
balance by undersampling the majority class. We note that mis-
representing the natural frequency of the classes could result in
an inflated false positive rate (Woodcock 1976; Bloomfield et al.
2012; Deshmukh et al. 2022), however, we found no significant
effects due to undersampling. We also enforced a 3/2 split for
the final training and validation sets, meaning we had 50% more
data for training than testing. For each of the 50 splits, we al-
lowed the ConvNet to train over 100 epochs and for each case
extracted the model with the lowest loss on the test set, as seen
in Fig. 2. The statistics for the TSS scores of all 50 partitions can
be seen in the boxplot of Fig. 10, which shows that the models in
general perform skilfully on the binary classification task (a TSS
> 0 is better than a random guess). We then selected the partition
corresponding to the red dot, which resulted in one of the highest
TSS scores.

We note that the number of spectra contributed by each ob-
servation although similar is not identical, with some observa-
tions contributing more than others. To ensure our models were
not biased to a particular set of observations, we tested their per-
formance when iteratively removing single observations from
the training and test set. We noted little change to the overall
TSS, which supports the generality of our results.

7. Training a swarm of models on the partition

The high TSS score associated with the chosen data partition
in the last section increases the chance that the model learns a
meaningful and common set of preflare signatures that is worth
extracting using our XAI techniques. From section 5, we know
that the optimal explanation is most likely obtained using Monte
Carlo methods by training a large number of models in concert
and then taking the average attributions. We therefore trained
a 50 model ensemble on spectra from the training set, with all
models achieving TSS scores around ∼ 0.8 on the test set.

7.1. Downsampling the swarm

Applying the full 50 model ensemble to each spectrum of
the combined PF/AR dataset is computationally expensive. We
therefore manually selected a subsample of 9 models that best
preserved the average attributions/heatmaps of the entire swarm,
resulting in drastic reductions to the computational time. To test
the validity of the reduced model selection, we ran tests over
several hundred randomly sampled spectra, and compared the
heatmaps derived from the full 50 model swarm and those de-
rived from the 9 representative models. We noted little to no
loss of explainability. The perceived continuity of generated
heatmaps under a smart subsampling of models can be inter-
preted as selecting a minimum of critical points that when av-
eraged result in a point at the center of gravity of the loss land-
scape. For instance, if the loss function was that seen in Fig. 8,

0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
TSS

TSS for all 50 partitions

all other splits
selected split

Fig. 10. Boxplot of the ConvNet’s performance in TSS for all 50 random
partitions of the observations. The red mark represents the performance
of the selected model, while the blue dots are the scores from the re-
maining partitions. The vertical red line is the median score of all splits,
while the edges of the gray box outline the first and third quartiles, the
whiskers at the end denote the min and max values while anything out-
side of this limit is considered to be an outlier. The plot shows that the
model easily achieves a high skill on the binary classification task.

Fig. 11. Attributions derived using Grad-CAM (top) and Expected Gra-
dients (bottom). Both techniques are equivalent up to an additive con-
stant as they highlight the spectrum in a similar way. In this case, the
model indicates that red wing enhancements are important signs of im-
pending flares.

then one could achieve the same result by densely populating the
circumference of the minimum with many models, or just sim-
ply two critical models whose parameters converge to positions
opposite one another.

7.2. Equivalence of Grad-CAM and EG

We now investigate whether the Grad-CAM and EG formalisms
are equivalent, in other words, whether the vector that both meth-
ods produce are similar. Figure 11 shows a spectrum taken from
the PF dataset and fed through the ensemble of representative
models. The upper and lower panels show the derived model at-
tributions (colors) using Grad-CAM and EG respectively. Both
Explainable AI techniques highlight the spectrum in a similar
way, however, the heatmap from Grad-CAM has been scaled
up by an additive constant. The similarity between attributions
across techniques appears consistent over different samples of
spectra. We therefore conclude that the Grad-CAM and EG tech-
niques are equivalent for our purposes up to an additive constant.
In this particular case, it appears that the explanation is not opti-
mal since the ConvNet focuses most of its attention on the k-line
for its decision rather than distributing the importance evenly
over both cores. This may be a consequence of the high degree
of symmetry between the line core shape, such that is the net-
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Fig. 12. Four spectrograms (labeled A-D) in black and white and their associated saliency maps as calculated using Expected Gradients. Darker
shades in the spectrograms indicate higher intensities, while warmer colors, such as reds and oranges in the attribution maps are linked to features
that the model believes are important for flare prediction. Each attribution map was normalized such that their colors are comparable. The position
of the h&k-line cores, as well as the red wing subordinate line are indicated by horizontal black dashed lines in the attribution maps. Panel A
through D shows that triplet emission, downflows, broad line cores, and highly asymmetric spectra respectively, are indicative of forthcoming
flares according to the model.

work need not analyze both cores for its decision as discussed in
section 5. We do however stress that these explanations are lo-
cal, meaning they are particular to each spectrum, and that many
times the network does treat the cores on an equal footing.

Having established this equivalence we decided to use EG
for the remainder of the analysis because of its favorable ax-
iomatic property of completeness. This property states that∑
λ φ(xλ) = FΘ(x), that is, the sum of attribution values across

a spectrum’s wavelengths is equivalent to the prediction score of
that spectrum after being passed through the ConvNet. This al-
lows us to create an equivalence between integrated attributions
and prediction scores effectively folding the one onto the other.
It also means that attributions are only useful at the scale of the
wavelength.

8. Results and discussion

In this section, we present the results of applying our ConvNet
and XAI methods to the AR/PF dataset. After processing the data
each spectrum becomes associated with 1) a single scalar value,
which is the ConvNets prediction score ŷ indicating whether it
believes the spectrum is from the PF class (closer to 1), or the
AR class (closer to 0), as well as 2) a vector which redistributes
the total prediction score across the spectrum, functioning as our
heatmap to indicate which features are most responsible for the
total score. We then analyze these outputs at several progres-
sive resolutions, firstly at the level of single spectra and spectro-
grams, then across the IRIS slit in time, and finally over entire
observations in relation to the flare start time.

8.1. Attributions over single spectra and spectrograms

In order to quickly analyze what the model found important
throughout the entire dataset, we compiled each spectrum into a

compact representation known as a spectrogram. Spectrograms
are concatenations of single spectra in time along pixels from
IRIS’s slit. Four examples of spectrograms can be seen in the
black and white images of Fig. 12. We note that a single verti-
cal slice from a spectrogram corresponds to a single spectrum,
whose shape is encoded as an intensity map (darker here means
more intense). This compactification left us with 59026 PF and
33316 AR spectrograms instead of millions of single spectra.
We then ordered the spectrograms according to their mean pre-
diction scores and manually scanning through the results with
the highest scores, that is, those spectrograms that were strongly
associated with flare precursory activity. Within these spectro-
grams we found consistent patterns that are well represented by
the four examples shown in Fig. 12.

Each of the four panels labeled A-D consist of the original
spectrogram (with darker colors indicating more intense emis-
sion) and its associated saliency map. The saliency map con-
sists of stacked single spectrum attributions like those in Fig. 11.
The y-axis (left) is always wavelength (measured in Angstroms)
while the x-axis is the raster number of the original IRIS obser-
vation, which implicitly encodes time as a function of the raster’s
cadence. For clarity, a minute interval is demarcated by a black
horizontal line in the attribution maps. Since all of these observa-
tions span 25 minutes and terminate with a solar flare, the lengths
of the markers are equivalent. The y-axis (right) tracks the pre-
diction score which is traced out by white lines in the saliency
maps. The position of the vacuum Mg ii h&k-line cores as well
as the red wing triplet emission are demarcated by black dashed
horizontal lines.

The scores and attributions are encoded into the attribution
maps as follows: The average score assigned to each spectrum
(at each raster) from the ensemble of representative models en-
codes the transparency of the map, such that darker regions are
seen to be more important for flare prediction. EG then takes
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these raw scores and fairly distributes them across the wave-
lengths turning scores into attributions. Regions of high attribu-
tions are colored with warmer colors and indicate those features
which are seen as important for flare forecasting. All panels were
normalized with an arbitrary value to make their respective col-
ors comparable.

Fig. 13. Attributions of individual spectra associated with the saliency
maps in Fig. 12. Each spectrum is a slice from the attribution maps
from the locations indicated by the vertical dashed red lines. The y-
axis is normalized intensity and the x-axis is wavelength in angstroms
(Å). Red, orange and turquoise colors indicate features that the model
associates with precursory flare activity.

Panel A shows that triplet emission is strongly indicative of
preflare activity, since EG highlights the portion of the spec-
trogram (in red) where this emission can be seen to become
enhanced. When the triplet emission subsides, the model’s at-
tention synchronously dissipates (colors turn from red to blue).
Similarly, panel B indicates that velocity flows in the form of red
wing enhancements are also indicative of preflare activity as can
be seen starting around raster 112. It is important to note that up-
flows are regularly flagged as important but are not shown in the
figure. The spectra in Panel C appear to become substantially
broader around raster 44, and are consequently highlighted or-
ange and red, indicating a positive relationship between preflare
features and broad spectra. Finally, panel D shows extremely
broad asymmetric spectra that are flagged as strong predictors.
An example spectrum from each panel can be seen in Fig. 13,
each of which were extracted from their corresponding spec-

trogram from the locations indicated by the red vertical dashed
lines.

We note that the prediction scores, as traced out by the white
lines in the attribution maps of Fig. 12, are saturated close to
the maximum PF prediction score of one. This is because these
maps represent some of the highest scoring maps in our dataset,
while other maps scored much lower.

8.2. Attributions over IRIS slits

The location of high attributions (warm colors) within the 25
minute windows of each saliency map appear to be randomly
distributed, and do not display a monotonic increase in predic-
tion score closer to flare onset as was found for the case of the
X1.6-class flare observed by IRIS on 2014 September 10 (Panos
& Kleint 2020). It is important to note that for the September
10 event, the authors restricted the pixels of the sit-and-stare to
those associated with enhanced activity within the SJIs. To con-
clude whether or not there is any general tendency for prediction
scores to increase during flares, we have to integrate over the
entire IRIS slit.

Figure 14 shows two positive instances that demonstrate ap-
proximate monotonic increases in prediction score with time (for
a comparison with nonflare events see Fig. D.1). Here we have
taken the mean attribution score of each spectrum, that is, we
integrated over wavelengths to produce saliency maps over the
entire IRIS slit. The black and white panels indicate the intensity
along the slit at different times with darker colors being more in-
tense than lighter colors. The black curves show the GOES X-ray
flux with flare class indicated on the y-axis on the right. Below
each of these images are their associated saliency map which as
usual indicates the most important regions along the slit in time
using the same color code (warmer colors are more important
for prediction). The white curves indicate the prediction score in
time integrated over all pixels, not just a subset that was used
in (Panos & Kleint 2020). The upper left panel of Fig. 12 is in-
fact a spectrogram taken from a single pixel of the upper panel
in Fig. 14, while the lower panel is of a new PF observation en-
tirely. The vertical black line indicates the end of the PF period
and the start of the flare according to the GOES catalog. The in-
tensity and attribution maps were normalized separately across
both sides of this divide, to ensure that the details of the PF pe-
riod were not drowned out by the relatively much higher intensi-
ties and attributions during the flare. We find that in roughly 105
out of 135 slits from the 19 PF observations, the location of the
maximum attribution along the slit is predictive and aligned with
the maximum UV emission later during the flare. Another good
example of this can also be seen in Fig. D.2 in the supplementary
material.

In both cases shown in Fig. 14, we see that there is a gen-
eral tendency for high prediction scores to be associated with
enhanced intensities, even though the intensities are only implic-
itly encoded into our models after the normalization. If an ener-
getic event occurs within the chromosphere, the excess emission
from the line cores typically vastly outcompete the gains in the
continuum, leading to a pseudo continuum that appears flat after
normalizing the spectra by their maximum values, see section 2
for details.

To examine the relationship between intensity and prediction
score in more detail we plotted the mean attribution score of ev-
ery PF spectrum as a function of DN’s per second in Fig. 15.
Larger average attributions imply spectra that the model be-
lieves is more useful for flare prediction. In the high intensity
regime right of the dashed orange line, the intensities appear to
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Fig. 14. Attributions over IRIS slits. The top panel shows an intensity
map (black and white) over the pixels of one of IRIS’s slit positions in
time, with darker colors indicating more intense emission. The corre-
sponding saliency map can be seen below, with warmer colors (orange,
red etc.) indicating regions that are seen by the models to be important
for flare prediction. The black curve in the intensity map corresponds to
the GOES-curve whose flare level is indicated on the right axis, while
the white curve in the attribution map is the mean prediction score as a
function of time along the slit (score seen on the right axis). The bottom
panel is the same but for a different observation. Both examples have an
increasing prediction score closer to flare onset.

be positively correlated with the attributions, with higher inten-
sity spectra being associated with higher attributions, however,
towards the "low intensity" regime, the coupling between attri-
bution score and intensity is only weak to nonexistent, and it is
possible to have low intensity spectra that are critical for flare
prediction.

8.3. Global explanations

Because the explanations derived from Grad-CAM and EG are
local, that is, specific for each spectrum, we aim to derive global
explanations so that we can investigate PF features in general. To
do so, we evaluated the distribution of attributions for the high-
est scoring PF spectra, that is, those spectra that had prediction
scores between 0.9 and 1. We then determined the position and
magnitude of each spectrum’s maximum attribution score and
summed the results, allowing us to track the aggregate impor-
tance of each wavelength for the model’s decisions. The result-
ing distribution can be seen in the top panel of Fig 16 together
with an arbitrarily scaled PF spectrum (red) and active region
spectrum (blue) for reference. The vertical dashed lines mark the
position of the Mg ii h&k line cores as well as the Mg ii triplet
emission. The histogram makes it clear that in general, the model
focuses on regions to the left and right of the k-core, with some
attention given to the cores themselves, the triplet emission, as
well as three metallic lines. This offers statistical support for the
observational claims made in section 8.1 in relation to Fig 12, in-
dicating that features such as triplet emission, flows in the form
of red and blue wing enhancements, as well as broad cores all
contribute positively to the network’s prediction score. The large

Fig. 15. Scatterplot of the average attribution using (EG) for each spec-
tra in the PF dataset as a function of intensity (DN/s). The plot is divided
into a low and high intensity regime by a dashed vertical line. The red
lines in either regime represents the best linear fits, and the correspond-
ing R2 values are provided in the upper part of each regime. We see
that "low intensity" spectra can still be critical for flare prediction, and
that very high intensity spectra are more strongly correlated with higher
prediction scores.

focus given to wavelengths on the left of the k-core is not ex-
clusively due to upflows, with the model also using these wave-
lengths to identify broad spectral cores such as those indicated in
the third panel of Fig 13. In fact, upon visual inspection, down-
flows are far more prominently given attention than upflows in
our dataset.

The model appears to also place focus on particular
absorption lines in the pseudo continuum corresponding to
Ni i, Cr ii, and Mn i. To explain the model’s focus on these
metallic lines, we randomly plotted many samples of spectra
that coincided with high attributions around these wavelengths.
We found no evidence of emission in these lines, however, we
know that the continuum height acts as a proxy for intensity
(high intensity leads to flat continuum after normalization)
and therefore we assume that the model uses these absorp-
tion lines to determine the "flatness" of the continuum and
thereby the intensity of the spectra. This is supported by a PF
observation where the highest attribution scores of the models
are clustered around the metallic lines. An example spectrum
and its associated attributions is shown in the lower panel Fig 16.

Interestingly, the second panel of Fig. 14 shows large in-
creases in attributions from pixels 50−100 towards the end of the
PF period where the GOES curve is relatively flat. Something to
note is the decrease in prediction score, which went from maxi-
mum values of 1 in Fig. 12, to values around 0.4 in Fig. 14. This
decrease in prediction score is a direct consequence of integrat-
ing over the entire slit, where many of the slit’s pixels are sam-
pling inactive regions of the Sun. The dependence of the score on
arbitrary integrations shows that under this current framework,
we have to reevaluate our metric and method of predicting flares
in real-time.
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Fig. 16. Global explanations. Upper panel: Distribution (black bars)
showing where the model focuses most of its attention on aggregate
for the spectra that have high prediction scores. For context, a red and
blue spectrum from the PF and AR class have been plotted respectively,
with vertical black dashed lines indicating the positions of the line cores
and triplet. Flows that show up left and right of the k-core are important
as well as emission in the triplet line. Bottom panel: The model focuses
on the metallic absorption lines as a proxy for intensity, since intense
spectra after being normalized lead to flat pseudo continuum.

8.4. Monotonicity

The problem of flare prediction is best framed as a two part prob-
lem. The first part is relatively insensitive to the time domain,
and is only concerned with the performance of a model on a bi-
nary classification task. This is the approach that the majority of
flare literature addresses, and it is not principally concerned with
how these data are distributed in time or at what point within the
time window the flare will occur. The second part concerns itself
with how the prediction score evolves over time. The identifica-
tion of monotonic trends in features and or monotonic increases
in predictions are key to deploying practical flare forecasting
strategies.

One can imagine a scenario where triplet emission is critical
for distinguishing two classes (AR/PF) because this emission is
high for all PF observations and low for all AR observations,
however, it might be the case that the triplet emission, although
a greater indicator of class, does not significantly vary within the
PF observations themselves, so that it has a very weak predictive
utility along the time dimension. In summary, we need to iden-
tify features that not only tell us if a flare will occur, but also
when it will occur. There is also no a priori reason to believe that
these two sets of features need be the same.

8.5. Attributions over entire IRIS rasters

Following the above discussion, it is also possible for the IRIS
slit at a particular step during the raster to be positioned off of the
active region. When this happens, the prediction score does not
monotonically increase, but can randomly fluctuate and even de-
crease with time. By calculating scores in intervals averaged over
each raster of IRIS, we can set a fair baseline prediction for each
observation. Since this average score is arbitrarily predicated on
the active region itself as well as IRIS’ coverage of the region,
the baseline of one observation is not comparable to the base-
line of another observation, however the trends of the prediction
curve in time as well as its inclination do become comparable.

Figure 17 condenses the behavior of our entire PF (top panel)
and AR (bottom panel) dataset within a single figure. The upper
panel shows a heatmap, where the y-axis indicates PF observa-
tion, whose number corresponds to Table A1, and the x-axis is
time in minutes before flare onset. Again the warmer colors indi-
cate periods of time that are seen by the models as important for
predicting flares. In other words, redder colors imply stronger
warning signals that a flare will occur.

To derive these heatmaps, each flare observation was placed
on a uniform time grid with intervals of 1 second and spanning
the PF period of 25 minutes. A matrix of size (19×1500), corre-
sponding to 19 PF observations and 1500 seconds, was then in-
crementally populated with the average prediction score over an
entire raster for each observation. Since most observations typi-
cally have cadences of more than two seconds, the initial high ca-
dence grid (and corresponding matrix) was only sparsely popu-
lated. Missing values were then filled in by linearly interpolating
across the calculated scores within each observation. Each of the
19 rows of the matrix were then normalized by their maximum
value so that observations with relatively high baseline predic-
tion scores did not drown out the behavior of prediction curves
from observations with lower baseline scores. Furthermore, the
observations were purposefully ordered both within Table A1
and the matrix, such that observations with similar normalized
prediction curves would appear close together, thus aiding the
identification of patterns across the dataset. The exact same steps
were also carried out for the AR observations seen in the bottom
panel.

We note that the PF dataset shows much more structure than
its AR counterpart which appears to have normalized predic-
tion curves that randomly evolve with time. The PF observations
as seen in the upper panel, can be divided into two regimes (a
strong and weakly predictive regime) depending on the behavior
of their prediction curves. Above the black horizontal line, we
see that 13 of the 19 observations tend to have prediction curves
that increase as we approach each observations flare onset. Fur-
thermore, the prediction envelope with time smooths out as we
move down from PF observation 1 to 13. Below the horizontal
black line we have six PF observations that do not appear to dis-
play any coherent behavior with time.

To understand why some flares are easier to predict than oth-
ers, we analyzed the SJI and AIA movies in every available pass-
band for all PF observations. We found that within the strongly
predictive regime, either the span of the rasters or the position
of the sit-and stares covered a region that was associated with
small brightenings as seen in Fig 18. In contrast, many observa-
tions within the weakly predictive regime had poor coverage of
the major preflare activity. Additionally, in the high prediction
regime, 77% of observations were large rasters (10 of 13 obser-
vations) with only 3 sit-and stare observations, this is in contrast
to the low prediction regime where only 33% (2 of the 6 ob-
servations) were rasters, implying that more spatial coverage of
the active region could lead to more reliable increases in predic-
tion score with time. Furthermore, as indicated in the bottom two
panels of Fig 18, those sit-and-stares that were in the strongly
predictive regimes had the IRIS slit positioned directly over the
regions of most preflare activity. Our small sample also appears
to indicate that M-class flares are easier to predict than X-class
flares, however, this could simply be due to the way these obser-
vations were sampled. A notable exception is the X-class flare
on March 29, 2014 (PF obs 14), which despite having excel-
lent coverage from IRIS nevertheless had a prediction curve that
decreased before flare onset. The flare was possibly triggered
by an erupting filament which showed increased chromospheric
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Fig. 17. Attributions for all observations. The top and bottom panel indicate the variation across all pixels and rasters of the models prediction score
with time for all PF and AR observations respectively. Each row is normalized by its maximum value, and corresponds to a single observation.
Higher relative prediction scores are indicated by warmer colors. We see that the PF observations (top) are much more structured and tend to
predict flares more strongly closer to flare onset, while the AR scores (bottom), result in a heatmap that is far more sporadic in time. The numbers
on each panels y-axis correspond to the observation numbers listed in Table A1.

Doppler velocities at least an hour before flare onset, as well as
plasma heating 15 minutes prior to the filament eruption (Kleint
et al. 2015). A possible explanation for the poor predictive per-
formance, despite the good IRIS raster coverage and physical
precursory activity, is that spectra sampled from the filament are
out of the models learned distribution, since the filament erup-
tion is rare in the training dataset. Furthermore, the prediction
curve might be saturated in the 25 minutes analyzed and might
therefore drop to lower values further away from flare onset.

9. Conclusions

We applied a powerful visual network known as a Convolutional
Neural Network to IRIS Mg ii spectra with the objective of find-
ing differences between spectral shapes sourced from preflare
regions and active regions that did not lead to a flare. Our model
was capable of distinguishing spectra from both these classes
with a TSS around 0.8, and a large variance depending on how
the training and testing datasets were split.

We then obtained visual explanations using two comple-
mentary explainable artificial intelligence techniques called
Gradient-weighted Class Activation Mapping and Expected Gra-
dients. These techniques allowed us to automatically discover
which features of individual spectra were seen by the model to
be most important for the task of flare prediction, representing
the highest possible resolution of explanations on the level of
the individual wavelengths.

The techniques accomplished this by monitoring the sensi-
tivity of the predictions to either small variations within the net-
work’s internal components, or variations over input pixels di-
rectly. In both cases the techniques returned similar results up
to an additive constant, and allowed us to project heatmaps onto
the spectra, with warmer colors (reds, oranges, etc.) indicating
more important features than cooler colors (blues) for flare pre-
diction. These heatmaps could then be applied to spectrograms
of IRIS in-order to automatically highlight critical regions that
could possibly indicate a flare triggering event.

We found that in addition to high triplet emission and core
intensity, irregularly shaped profiles, broad spectral cores, and
single peaked spectra, flows in the form of extended red and blue
wing emissions were also consistently flagged by the model as
important precursory features, and that 78% of the time, high at-
tribution scores along the IRIS slit were predictive of the location
of the flare’s maximum UV emission.

The possible importance of increased turbulence as an early
warning sign and potential flare triggering mechanism has been
noted in the literature (Harra et al. 2001), with an example of
a rise in nonthermal velocity taking place 11 minutes before
flare onset, possibly stimulated by rising flux. Furthermore, even
though high scoring regions are typically associated with en-
hanced intensities, there are several instances where prediction
scores increase while both intensity and the GOES-curve remain
constant, once again consistent with the findings of Harra et al.
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Fig. 18. Selected images of different PF observations in the strongly pre-
dictive regime of Fig 17. The PF observation numbering corresponding
to Table A1, as well as the filter wavelength is indicated in the top left
and right hand corners of each image, respectively. The green vertical
lines indicate the span of the IRIS raster. The flares that are easiest to
predict based on spectra have the slit directly over regions where bright-
enings occur.

(2001), and indicating the importance of spectral analysis for
flare prediction at a high resolution.

We note that any practical deployment of a flare prediction
strategy for small field of view spacecrafts like IRIS with mul-
tiple programmable observational settings (exposure time, ca-
dence, raster mode etc.) is unlikely. The reasons for this are as
follows: If we use the prediction score (number of spectra scored
confidently by the network as PF), as a "flare warning signal,"
then the absolute value of the score becomes meaningless due to
arbitrarily variations in active region coverage, which depends
on the size of the active region itself, as well as programmatic de-
cisions such as IRIS’s slit length and area spanned by the raster.
All these free variables can either artificially drive the prediction
scores up or down. Additionally, features that were important
for the binary classification task of separating AR/PF spectra,
are not necessarily equally important for telling us when a flare
will occur in time. All these considerations imply that the ac-
tual objective for IRIS spectral based flare prediction, is not to
achieve high TSS scores, but to identify monotonically increas-
ing predictions that have steep inclinations, while disregarding
the absolute value of these curves.

We found that on aggregate, the prediction curves increased
for the majority of our PF observations closer to flare onset, how-
ever, there were several exceptions that did not show any coher-
ent increase in prediction score, and some observations whose
scores actually decreased in time. An extensive analysis of each
PF observation over all SJI and AIA filters revealed that flares
were easier to predict when IRIS sampled a large spatial region
or had its slit positioned directly over small brightenings.

Although practical and reliable flare prediction with IRIS is
unlikely, the methods developed here could easily be exported to
new instruments that can extract spectroscopic data from entire
active regions with multi-slit girds, such as NASA’s new MUSE

mission that has a multi, 37 slit EUV coronal spectrograph
(Pontieu et al. 2019).
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Appendix A: Classical neural network

One of the simplest foundational networks is the fully connected
feed forward network (FNN) shown in Fig A.1. It consists of
multiple layers, with each layer containing a number of neurons
represented by black circles. The term "fully connected" refers to

Input layer Hidden layer Output layer

Fig. A.1. Schematic of a simple fully connected feed forward network.
An input spectrum x is fed into the network which stimulates the hid-
den layer causing the neurons (black circles) to produce output signals
that are proportional to the weighted linear sum of the spectrum’s in-
tensities. The content of each neuron is then passed through a nonlinear
activation function g, such as a softmax or ReLU, which allows the net-
work to approximate a large set of complex behaviors. The process is
continued with the hidden layer serving as the input layer for the final
two neurons. The neuron which produces the strongest signal represents
the network’s prediction on whether the spectrum comes from the AR
or PF class. The weight matrices Θ1,2 determine how information flows
through the network and are updated by propagating the errors from a
set of predictions back through the network, and adjusting the individual
weights against a loss function via gradient descent.

the fact that every neuron has a connection to every other neuron
in the layers surrounding it. Each neuron is therefore in commu-
nication with all the neurons from the preceding layer, and the
strength of the signal between any two neurons is modulated by
the models weights {θ}. The connections between each layer are
therefore summarized by two matrices Θ1 and Θ2, where each
entry θi j from one of these matrices corresponds to the ease of
communication between two inter-layer neurons.

The term "feed forward" refers to the fact that information
flows forward through the network. The magnitude of the re-
sponse in neuron j is simply a weighted linear sum of the inputs
according to their weights z =

∑
i θi jxi. This sum is then passed

through a function g(z), referred to as an activation function,
which is necessarily nonlinear and allows the network to approx-
imate a large set of complex functions. In our case, the content of
the collective stimulation in each of our neurons passes through a
ReLU activation function g(z j) = z+

j = max(0, z j) except for the
final output layer, which produces a probability by passing the
signal through a softmax function g(z j) = exp(z j)/

∑
i exp(zi).

The two final neurons vote for either the AR or PF class, and
the neuron that has the strongest signal represents the network’s
prediction ŷc.

The randomly initiated weights of the network are optimized
by minimizing Eq. 1. Although prediction is performed by al-
lowing information to flow forward through the network, opti-
mization is performed by propagating the collective errors from
the prediction back through the network using an algorithm re-
ferred to as backpropagation, a NN equivalent to gradient de-
scent. The network therefore combs through 64 spectra pro-
ducing a prediction for each instance. The loss is then calcu-
lated using Eq. 1, and the network’s weights are updated using

backpropagation. This procedure is continued for several epochs
(passes over the entire dataset), adjusting the weights and flow
of information through the network, so that some signals are
strengthened while others attenuated.

Appendix B: Grad-CAM (detailed description)

We know that each feature map is activated by some visual pat-
tern within the input, such as triplet emission or broad line cores,
and furthermore that feature maps in deeper layers are capa-
ble of extracting more sophisticated representations of the input
(Zeiler & Fergus 2014). An important observation when look-
ing at Fig. 5, is to note that the original input spectrum can be
roughly reconstructed by placing each of the final feature map
activations on-top of one another (summing them together). To
makes this clear, feature map A1 identifies the triplet emission,
A2 the h-core, A3 the pseudo continuum, and A4 the k-core, thus
superimposing all the maps leads to a reconstruction of the orig-
inal spectrum. Grad-CAM is used to identify which of the four
final maps are most important for the classification task, which
for our problem translates to which features of each spectrum
are strongly related to preflares. After ranking the maps in order
of importance, each map can then be assigned a weight before
they are summed together. Because each map is weighted differ-
ently, the sum of the maps now no longer reproduce the original
spectrum, but rather a vector of values whose magnitude at each
index represents that pixel’s/wavelength’s importance. This vec-
tor in other words is our heatmap that can be projected back onto
the original spectrum.

The question now is how does Grad-CAM assign weights to
each map? The mechanism for doing this is depicted in Fig. A.2.
Grad-CAM looks at the maps in the final convolutional layer
(dashed box in the figure), and assigns weights to each map by
monitoring how sensitive (to first order) the resultant output pre-
diction yc is to small variations of the map Ak

i , where the index
i runs over the individual pixels of the map and c represents the
class. The weight αc

k assigned to each map is simply the average
(global pooling) of the gradients within each pixel of the map

αc
k =

1
Z

∑
i

∂yc

∂Ak
i

, (B.1)

where in our case Z = 22, the number of pixels in an individual
map. The saliency map is therefore given by

Mc = ReLU

∑
k

αc
kAk

 , (B.2)

where the role of the ReLU function is to suppress the contri-
butions from the negative (AR) class, thus producing a saliency
map that only highlights the features deemed important for the
classification of PF spectra. As seen in Fig. A.2, the resulting
coarse heatmap Mc has to first be interpolated to the size of the
input spectrum (240 pixels) before it can be projected onto the
input and interpreted.

There are several nuances that we list here to clear any con-
fusion about the results produced by Grad-CAM. 1) Although
the filters/kernels are fixed in a trained model, different spectra
can lead to different activations and therefore different feature
maps. This property is referred to as locality, meaning that Grad-
CAM produces only local explanations specific to each example
spectrum. 2) A single feature map need not find patterns that are
spatially connected in the input. For instance, if a kernel learned
weights that lead to activations and a feature map that identifies
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global pool

CA
M

last convolutional layer

(240) (2, 74) (4, 22) (4, 11) (44) (5) (2)

Fig. A.2. Schematic of Grad-CAM. A single spectrum x is passed into a ConvNet that has been trained to distinguish between the PF/AR datasets.
The last convolutional layer before the max pooling and fully connected layers contains the network’s most sophisticated understanding of the
spectrum, with each of the four feature maps Ak, focusing on different aspects deemed important for the classification task. The average gradients
αc

k of the output prediction are taken with respect to each of the maps. Larger gradients indicate that the features identified by a particular map are
more important for the classification. All four feature maps are then scaled by their corresponding importance and summed before being passed
through a ReLU function that isolates the features the network focuses on for the positive classification. The resultant CAM heat map is then
interpolated from the scale of the feature map to the dimensionality of the input data before being projected onto the spectrum.

noise, then assuming that the cores have the best signal-to-noise,
the maps would disjointly activate over the continuum left and
right of both cores. 3) Due to the successive use of convolutions,
the feature maps shrink in width as the information flows deeper
into the network, meaning that the derived saliency map is often
much smaller in size than the input spectrum and has to be inter-
polated back to the original size. Therefore, network architecture
dictates the resolution of the final heatmap, with extremely deep
networks having poor heatmap resolution, and extremely shal-
low networks lacking sophisticated explanations. This last point
highlights a weakness of Grad-CAM, namely that the success of
quality explanations depends strongly on the selection criterion
of the network’s architecture, which in itself is done via trial and
error.

Our solution to this final point was to construct several net-
work architectures with different depths, number of convolu-
tions, as well as differing structures of the fully connected lay-
ers. We found that the problem was simple enough to address
with the relatively minimalistic architecture shown in Fig A.2,
and that going deeper resulted in poor resolution, while a single
convolutional layer produced poor quality explanations. An ul-
timate confirmation of our architectural choice however is best
supported by using an alternative method that does not itself de-
pend strongly on the specific architecture of the network.

Appendix C: EG (detailed description)

EG utilizes the idea of "missingness" which is a common con-
cept in cooperative game theory. The idea is that if we remove
wavelengths from the input spectrum, then those missing wave-
lengths that affect the prediction of the network most must be
more critical for its discrimination task. In order to weigh wave-
length importance via this method requires one to average over

all possible subsets (or coalitions) of wavelengths to ensure the
fair distribution of importance.

The need for subsetting becomes clear if one considers the
very likely scenario where two neighboring wavelengths contain
the same information, and furthermore, that this information is
responsible for 90% of the network’s decision. By simply re-
moving one wavelength at a time, the performance of the net-
work will never drop significantly, since the partner wavelength
will always carry the discriminant load. Counter-intuitively, this
might result in the two most important wavelengths being ranked
as useless, which is not such an unlikely scenario if one consid-
ers that proximal wavelengths in a high-resolution spectrogram
such as IRIS are likely to transmit similar types of information.

A complete formalism that allows for the fair distribution of
wavelength relevance can be found in the game theoretic quan-
tity called the Shapley value (Shapley 1951), given by

φλ(FΘ) =
∑
S⊂N

(s − 1)!(n − s)!
n!

[FΘ(S ) − FΘ(S − λ)], (C.1)

where |N | = n = 240 is the total number of λ-points, |S | = s is a
subset of those wavelengths, λ represents a single input wave-
length, whose importance we are trying to calculate, and FΘ

is the characteristic function giving us the subset’s "worth". If
we parameterize the characteristic function FΘ with a ConvNet
trained on the binary classification PF/AR problem, then we can
interpret the Shapley value for a particular wavelength λ and in-
put spectrum x, as the expected difference between the predic-
tion ŷ over all lambda coalitions/subsets, with and without said
wavelength.

The prefactor (s − 1)!(n − s)!/n! weights each score discrep-
ancy by the number of ways a particular subset of pixels can
be formed (in our case each of the n-wavelengths are equally
likely), and allows us to alternatively interpret the Shapley value
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φλ as the expected marginal contribution of λ to the network’s
output prediction.

The question now is how to reformulate Eq. C.1 so that it is
compatible with functionsFΘ that are parameterized by NNs. An
important caveat is that NNs have fixed architectures, so one can-
not simply remove input channels when subsetting over wave-
length coalitions. This means that NNs require each wavelength
to pump information through it at all times. A solution is there-
fore to construct a baseline that represents missingness and can
be fed through the network constantly without affecting the re-
sults. In this way, we can artificially turn some wavelengths off
while still respecting the constant flow of information through
the networks input channels, allowing us to form pseudo subsets
to approximate the form of Eq. C.1.

This baseline must be selected with great care, since it can
severely affect and bias the results. For instance, if one assumes
that missingness is best represented by zeros, then the black re-
gions of any image (such as outline contours) or low intensity
portions of any spectrum (which might be the most critical as-
pects) would be considered useless. Another common choice of
baseline is to inject Gaussian noise into some wavelengths so
that with many forward passes through the network, the average
contribution of said wavelength becomes negligible (Smilkov
et al. 2017). This baseline however ignores the very real fact
that neighboring, as well as disjoint wavelengths might be cor-
related to one another, and not independently distributed as such
distributions would assume.

Arguably, the correct baseline, and the strategy employed
by EG, is to represent missingness by the actual dataset itself.
Like the Gaussian distribution, flooding combinations/subsets of
wavelengths with the intensities found within the dataset, would
result in a zero net average displacement of the network’s pre-
diction score for a particular spectrum. To see why, consider that
after randomly sampling particular combinations of intensities
from the dataset, it is likely that some features emerge from the
AR class, leading to a decrease in the network’s output predic-
tion. At the same time, the sampling is equally likely to counter-
balance this shift by allowing particular features associated with
the PF class to emerge, resulting in an increase to the score. In
addition to the invariant behaviour of the score under this type
of sampling (a fact that is critical for the formation of pseudo
subsets), it also respects the full set of correlations and inter-
dependencies that exist between the wavelengths.

Figure C.1 demonstrates how EG derives the heatmap for a
particular PF spectrum. Each of the rows in the figure represent
a path in image space. In each case, we start from some base-
line for missingness, that is, a specific spectrum from the con-
joined PF/AR dataset (blue). In each row, EG interpolates from
left to right between the baseline spectrum and a particular tar-
get spectrum (orange). Notice that although the baseline starts
from different points in the image space, that is, different spec-
tra, the target is always the same spectrum for which we want
to calculate the heatmap. As we vary α from 0 to 1, the features
of the target spectrum (such as triplet emission) slowly emerge
from the baseline and become dominant. At each point along a
particular path, we feed the interpolated spectra into the network
FΘ and calculate its prediction score.

We can then estimate which wavelengths contributed most
to the output score by calculating the difference between scores
of successive images along a path and monitoring the accumu-
lated gradient of the output with respect to each wavelength.
Those wavelengths that are critical for the network’s decision
will affect the output’s prediction most. For instance, in the case
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Fig. C.1. Diagram showing the calculation procedure for producing an
EG heatmap. The heatmap for a target spectrum (orange) is calculated
by interpolating between a set of baseline spectra (blue) and the target.
As we move from left to right along each row, the interpolated spec-
trum in each panel is fed into the network which generates a prediction
score. The wavelengths with the largest accumulated gradients along
the path are then ranked as most critical for flare prediction. Instead of
integrating over all paths, EG calculates an expectation value for the
wavelength’s importance by feeding a random sample (gray spectra)
into the network.

shown here, the triplet emission is not present at the start of the
path, but slowly emerges as we get closer to the target. If the
network thinks this feature is important, the output will depend
most strongly on these wavelengths and accumulate the steepest
gradients as we travel along the image path.

We therefore understand that integrating along α while mon-
itoring the accumulated gradients along a single path is analo-
gous to calculating the difference between scores under a single
subset, reproducing the functionality of [FΘ(S ) − FΘ(S − λ)]
in Eq. C.1. However this subset at the moment is "dirty", since
we have a single baseline from the dataset whose effects only
become negligible when averaged over many paths. In order to
unbiase our baseline, as well as form pseudo subsets over ev-
ery combination of wavelengths, we need to gain an additional
integration term over x′ and integrate over all image paths.

Putting this all together, a mathematically concise NN equiv-
alent of Eq. C.1 is given by

φλ|EG =

∫
x′

((
xλ − x′λ

)
×

×

∫ 1

α=0

δFΘ (x′ + α (x − x′))
δxλ

dα
)
pD

(
x′
)

dx′

' E
x′∼D,α∼U(0,1)

[(
xλ − x′λ

) δFΘ (x′ + α × (x − x′))
δxλ

]
,

(C.2)

where the first integral over x′ selects the baseline starting point,
and at heart is responsible for generating our pseudo subsets over
wavelength allegiances. The second integral over α propagates
us along a particular path as defined by x′, such that the target
spectrum (orange) emerges from the baseline as α|0 → 1, al-
lowing us to calculate the differences between scores with and
without particular features. The function FΘ as usual represents
our ConvNet, which is the same as that used for Grad-CAM,
and was trained on the binary PF/AR classification problem. Fi-
nally D means that our baseline samples form the actual dataset,
which as discussed above results in a net zero effect on the output
score when averaged over many samples. Crucially, this choice
of baseline also respect the existence of a rich set of correlations
that exist between different wavelengths, something a Gaussian
analog for missingness would neglect.
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Since the process of integrating over all complete image
paths is computationally infeasible, EG takes the expectation
value along a set of randomly selected paths. In Fig. C.1 this
is represented by only feeding the NN the spectra from the ran-
domly selected gray highlighted panels. It has been shown that
the expectation converges and that the results respect several
important interpretability axioms such as completeness, where
each wavelength’s attributions sums to the network’s output pre-
diction (Gabriel et al. 2021). For our purposes we found that a
baseline sample of 500 spectra was sufficient for EG to converge.

Normally the heatmaps derived from such path attribution
methods do not necessarily produce smooth outputs, that is, attri-
butions between neighboring wavelengths can be large. In many
cases one would assume that neighboring wavelengths would re-
lay similar types of information and therefore produce smooth
attributions. Much work has gone into encouraging such intuitive
restrictions over the derived explanations (Rieger et al. 2019).
For EG, this is normally achieved by incorporating the attribu-
tions into a prior, and wrapping them into a differentiable func-
tion that promotes smooth attributions across neighboring wave-
lengths, while penalizing heatmaps with large amounts of local
variation. In this way, the attributions form part of the training
procedure, and on some datasets actually improve model perfor-
mance and convergence time (Gabriel et al. 2021). We attempted
to incorporate this prescription by defining the generalized loss
function

S(Θ, x) = L(Θ, X)︸   ︷︷   ︸
BCE

+σ
∑
x,λ

|φ(x)λ+1 − φ(x)λ|︸                      ︷︷                      ︸
attribution prior

, (C.3)

with the first term L being the standard binary cross-entropy
as discussed in Eq. 1, and the second term a differentiable at-
tribution prior consisting of wavelength attributions φ(x)λ from
Eq. C.2. This term promotes the variations between attributions
of neighboring wavelengths to be small. Here, σ is a regulariza-
tion parameter that controls the trade-off between smooth attri-
butions and model accuracy.

Unfortunately, following this prescription did not result in
smooth heatmaps for the case of our data. The smoothing effect
only initiated after the classification score became small, which
tended to always be after the point where the model overfitted the
training data, resulting in a divergent validation loss. When we
tried to increase the hyperparameter σ such that the smoothing
would initiate before the critical overfitting point, the network’s
classification score suffered and rapidly diverged. We therefore
selected to add a manual small smoothing post-hoc (after train-
ing) for increased interpretability. The degree of smoothing was
adjusted until the heatmaps matched those derived from grad-
CAM.

As a point of analogy, grad-CAM naturally smooths its at-
tributions due to the coarse feature maps that result from the di-
mensionality bottleneck brought about by consecutive convolu-
tional layers. In this case attributions are assigned on an 22-point
grid (final feature map dimension) and then upscaled to the res-
olution of the input. EG on the other hand always operates and
derives its attributions at the resolution of the input.

Appendix D: Supplementary figures

Fig. D.1. Same as Fig. 14, but for nonflare (AR) events.

Fig. D.2. Same as Fig. 14, but an example of how the location of the
maximum attributions along the slit in the preflare region (bottom panel,
left) align with the maximum UV emission of the flare (upper panel,
right). Notice that even though the intensity is larger around pixel 160,
the attributions are only high around pixels 130, where the maximum
UV intensity is seen later during the flare.
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Table A1. PF observations

# Class Date and time Observation mode CAD FOV center OBSID
when raster started (sec) (arcsec)

1 M6.5 2015-06-22T17:00 Large sparse 16-step raster 33 (72,192) 3660100039
2 M1.0 2014-11-07T09:37 Large coarse 16-step raster 23 (-646,224) 3860602088
3 M1.1 2015-08-21T16:01 Medium dense 32-step raster 102 (-467,-336) 3660104044
4 M3.9 2014-06-11T18:19 Medium coarse 8-step raster 21 (-781,-306) 3863605329
5 M1.8 2015-03-11T04:46 Large coarse 8-step raster 75 (-430,-194) 3860259280
6 M1.1 2014-09-06T11:23 Large sit-and-stare 9 (-709,-298) 3820259253
7 M3.4 2014-10-27T20:56 Large sit-and-stare 16 (779,-271) 3864111353
8 X2.1 2015-03-11T15:19 Large coarse 4-step raster 16 (-353,-197) 3860107071
9 M1.0 2014-06-12T18:44 Medium coarse 8-step raster 21 (-670,-306) 3863605329
10 M1.8 2014-02-12T21:50 Large coarse 8-step raster 42 (140,-90) 3860257280
11 M1.3 2014-10-26T18:52 Large sit-and-stare 16 (648,-287) 3864111353
12 X2.0 2014-10-27T14:04 Large coarse 8-step raster 26 (727,-299) 3860354980
13 M2.3 2014-11-09T15:17 Large coarse 4-step raster 37 (-217,-205) 3860258971
14 X1.0 2014-03-29T14:09 Very large coarse 8-step raster 72 (490,282) 3860258481
15 X1.6 2014-10-22T08:18 Very large coarse 8-step raster 131 (-292,-303) 3860261381
16 M1.4 2015-03-12T05:45 Large sit-and-stare 5 (-185,-190) 3860107053
17 X1.0 2014-10-25T14:58 Large sit-and-stare 5 (408,-319) 3880106953
18 X1.6 2014-09-10T11:28 Large sit-and-stare 9 (-137,125) 3860259453
19 M8.7 2014-10-21T18:10 Large sit-and-stare 16 (-359,-316) 3860261353

AR-observations

1 2015-05-18T14:39 Large coarse 4-step raster 21 (300,-98) 3860256971
2 2015-05-18T16:14 Large coarse 4-step raster 21 (315,-95) 3860256971
3 2015-05-21T18:59 Very large sit-and-stare 5 (-382,398) 3800507454
4 2015-07-03T16:59 Large sparse 8-step raster 45 (-186,213) 3620006130
5 2015-07-04T10:09 Very large sit-and-stare 9 (86,174) 3860108354
6 2015-07-04T16:59 Large sparse 8-step raster 44 (20,202) 3620006130
7 2015-07-28T15:18 Medium coarse 4-step raster 37 (-227,-289) 3660109122
8 2015-08-07T22:14 Large coarse 8-step raster 74 (547,125) 3860259180
9 2015-08-09T06:15 Large coarse 8-step raster 75 (-236,-370) 3860009180
10 2015-09-16T18:17 Medium coarse 16-step raster 34 (-564,-356) 3600101141
11 2015-10-17T00:31 Large sit-and-stare 3 (-558,-233) 3660105403
12 2015-07-24T05:35 Large sit-and-stare 9 (557,-204) 3620109103
13 2015-04-08T04:57 Large sit-and-stare 5 (45,-118) 3860107054
14 2015-01-30T11:27 Very large dense 4-step raster 21 (-756,161) 3860607366
15 2014-03-29T20:14 Medium sit-and-stare 17 (687,-166) 3820011652
16 2014-12-01T15:44 Large sit-and-stare 10 (-80,-329) 3800008053
17 2014-03-13T09:35 Large sit-and-stare 9 (521,23) 3820109554
18 2014-11-28T21:05 Very large sit-and-stare 10 (-34,-322) 3860009154
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